China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part

Product Description

Brush Cutter Part diameter 8 mm Drive Shaft For BrushCutter

  

 

NO Model L- 1 (MM) A (MM) B (MM) Material Note
1 ESR-DS-80-1 80 A STYPE 26*9T A STYPE 26*9T 40CR  
2 ESR-DS-120-1 120 A STYPE 22*9T A STYPE 22*9T 40CR  
3 ESR-DS-120-2 120 A STYPE 22*9T C STYPE 24*5.3 40CR  
4 ESR-DS-135-1 135 A STYPE 22*9T C STYPE 22*5.35 40CR  
5 ESR-DS-135-2 135 A STYPE 22*9T A STYPE 22*9T 72B  
6 ESR-DS-330-1 330 A STYPE 22*9T A STYPE 22*9T 40CR  
7 ESR-DS-340-1 340 C STYPE 22*6.6 B STYPE 13*M7 40CR  
8 ESR-DS-388-1 388 A STYPE 26*9T A STYPE 26*9T 72B  
9 ESR-DS-469-1 469 A STYPE 22*9T A STYPE 22*9T 40CR  
10 ESR-DS-530-1 530 A STYPE 22*9T A STYPE 22*9T 40CR  
11 ESR-DS-600-1 600 A STYPE 26*9T A STYPE 26*9T 40CR  
12 ESR-DS-660-1 660 A STYPE 20*9T B STYPE 25*M8 40CR  
13 ESR-DS-675-1 675 A STYPE 23*9T B STYPE 21*M8 72B  
14 ESR-DS-685-1 685 A STYPE 22*9T B STYPE 26*M8 40CR  
15 ESR-DS-703-1 703 A STYPE 22*9T C STYPE 22*5.3 40CR  
16 ESR-DS-703-2 703 C STYPE 25*5.35 C STYPE 25*5.35 40CR  
17 ESR-DS-725-1 725 B STYPE 25*M8 B STYPE 25*M8 40CR  
18 ESR-DS-747-1 747 A STYPE 24*9T A STYPE 24*9T 40CR  
19 ESR-DS-750-1 750 A STYPE 20*9T B STYPE 25*M8 72B Spline 79.5X1.1X<P7.4
20 ESR-DS-751.5-1 751.5 A STYPE 27*7T B STYPE 20*M7 40CR Spline 138X1.1X<ll7
21 ESR-DS-755- 1 755 A STYPE 2 0*9T C STYPE 24*6.8 72B Spline 44.5X1.1X<D7.4
22 ESR-DS-755-2 755 A STYPE 2 0*9T B STYPE  25*M8 72B  
23 ESR-DS-755-3 755 A STYPE 22*9T A STYPE 22*9T 72B  
24 ESR-DS-757-1 757 A STYPE 20*9T B STYPE 25*M8 72B Spline 79.5X1.1X7.4
25 ESR-DS-757-2 757 A STYPE 20*9T C STYPE 24*6.8 72B Spline 94.5X1.1X7.4
26 ESR-DS-760.5-1 760.5 A STYPE 22*9T A STYPE 22*9T 40CR Spline 25X1.1X7
27 ESR-DS-762-1 762 A STYPE 22*9T A STYPE 22*9T 40CR  
28 ESR-DS-762-2 762 A STYPE 22*7T C STYPE 24*5.3 40CR  

NO Model L-1 (MM) A (MM) B (MM) Material Note
29 ESR-DS-762-3 762 A Style 22*7T A Style 22*7T 40CR  
30 ESR-DS-762-4 762 A Style 22*9T B Style 22*M8 72B  
31 ESR-DS-762-5 762 C Style 22*5.3 C Style 22*5.3 40CR  
32 ESR-DS-763-1 763 A Style 26*9T B Style 30*M8 40CR  
33 ESR-DS-765-1 765 A Style 26*9T C Style 25*6.8 40CR  
34 ESR-DS-772-1 772 A Style 22*9T A Style 22*9T 72B  
35 ESR-DS-773-1 773 A Style 20*9T C Style 24*5 72B  spline44.55X1.1X<P7.4
36 ESR-DS-782-1 782 A Style 22*9T B Style 24*M8 40CR  
37 ESR-DS-784-1 784 A Style 22*9T D Style <P12X22*9T 40CR  
38 ESR-DS-790-1 790 A Style 20*9T A Style 20*9T 40CR  
39 ESR-DS-790-2 790 A Style 22*9T C Style 22*5 72B  
40 ESR-DS-798.5-1 798.5 A Style 28*9T D Style <ll14X19*5.4 40CR  
41 ESR-DS-822-1 822 A Style 25*9T B Style 20*M8 40CR  
42 ESR-DS-832-1 832 A Style 24*9T B Style 15*M8 40CR  
43 ESR-DS-840-1 840 A Style 22*9T A Style 22*9T 40CR  
44 ESR-DS-846-1 846 A Style 24*9T B Style 18*M8 40CR  
45 ESR-DS-855-1 855 A Style 22*9T A Style 22*9T 72B  
46 ESR-DS-915-1 915 A Style 22*9T A Style 22*9T 40CR  
47 ESR-DS-948-1 948 A Style 22*9T A Style 22*9T 40CR  
48 ESR-DS-953-1 953 A Style 22*9T A Style 22*9T 40CR  
49 ESR-DS-965-1 965 A Style 22*9T A Style 22*9T 72B  
50 ESR-DS-1000-1 1000 A Style 22*9T A Style 22*9T 40CR  
51 ESR-DS-1015-1 1015 A Style 22*9T A Style 22*9T 40CR  
52 ESR-DS-1092-1 1092 A Style 22*9T A Style 22*9T 40CR  
53 ESR-DS-1222-1 1222 C Style 22*5.3 B Style 13*M7 40CR  
54 ESR-DS-1255-1 1255 A Style 22*9T D Style 13X26*7 40CR  
55 ESR-DS-1299-1 1299 A Style 22*9T B Style 13*M7 40CR  
56 ESR-DS-1322-1 1322 C Style 22*5.3 B Style 14*M7 40CR  
57 ESR-DS-1324-1 1324 A Style 30*9T B Style 25*M8 40CR  
58 ESR-DS-1330-1 1330 A Style 22*9T C Style 30*6.8 40CR  

59 ESR-DS-1350-1 1350 A Style 26*9T B Style 25*M8 40CR  
60 ESR-DS-1370-1 1370 A Style 24*9T B Style 25*M8 40CR  
61 ESR-DS-1375- 1 1375 A Style 22*9T A Style 22*9T 40CR  
62 ESR-DS-1380-1 1380 A Style 24*9T B Style 25*M8 40CR  
63 ESR-DS-1380-2 1380 A Style 24*7T B Style 25*M8 40CR  
64 ESR-DS-1380-3 1380 A Style 30*9T B Style 25*M8 40CR  
65 ESR-DS-1390-1 1390 A Style 22*9T A Style 22*9T 40CR  
66 ESR-DS-1390-2 1390 A Style 24*7T B Style 25*M8 40CR  
67 ESR-DS-1390-3 1390 A Style 24*9T B Style 25*M8 40CR  
68 ESR-DS-1390-4 1390 A Style 24*9T D Style 13X26*7 40CR  
69 ESR-DS-1398-1 1398 A Style 25*9T D Style 4>13X26*7 40CR  
70 ESR-DS-1405- 1 1405 A Style 24*9T D Style 13X26*7 40CR  
71 ESR-DS-1448-1 1448 A Style 22*9T C Style 22*5.35 40CR  

72 ESR-DS-1460-1 1460 AStyle 22*9T AStyle 22*9T 40CR  
73 JG-VZ-1469-1 1469 AStyle 30*9T BStyle 25*M8 40CR  
74 ESR-DS-1476-1 1476 CStyle 22*5.3 BStyle 13*M7 40CR  
75 JG-VZ-1480-1 1480 AStyle 22*9T AStyle 22*9T 40CR  
76 ESR-DS-1490-1 1490 AStyle 20*9T AStyle 20*9T 40CR  
77 ESR-DS-1500-1 1500 AStyle 26*9T AStyle 26*9T 40CR  
78 ESR-DS-1500-2 1500 AStyle 22*9T CStyle 30*6.8 40CR  
79 ESR-DS-1500-3 1500 AStyle 26*9T AStyle 26*9T 40CR  
80 ESR-DS-1510-1 1510 AStyle 26*9T AStyle 26*9T 40CR  
81 ESR-DS-1515-1 1515 AStyle 26*9T AStyle 26*9T 40CR  
82 ESR-DS-1517-1 1517 AStyle 22*9T AStyle 22*9T 40CR  
83 ESR-DS-1518-1 1518 AStyle 27*9T CStyle 27*5.35 40CR  
84 ESR-DS-1519-1 1519 AStyle 24*9T AStyle 24*9T 40CR  
85 ESR-DS-1522-1 1522 AStyle 22*9T AStyle 22*9T 40CR  
86 ESR-DS-1522-2 1522 AStyle 22*7T AStyle 22*7T 72B  
87 ESR-DS-1522-3 1522 AStyle 22*9T AStyle 30*9T 72B  
88 ESR-DS-1525-1 1525 AStyle 20*9T AStyle 25*9T 40CR  
89 ESR-DS-1526-1 1526 AStyle 24*9T AStyle 24*9T 40CR  
90 ESR-DS-1526.5-1 1526.5 AStyle 22*9T AStyle 22*9T 40CR  
91 ESR-DS-1530-1 1530 AStyle 26*9T AStyle 26*9T 40CR  
92 ESR-DS-1530-2 1530 AStyle 26*9T BStyle 25*M8 40CR  
93 ESR-DS-1530-3 1530 AStyle 26*7T AStyle 26*7T 40CR  
94 ESR-DS-1530-4 1530 CStyle 26*5.3 CStyle 26*5.3 40CR  
95 ESR-DS-1532-1 1532 AStyle 27*9T AStyle 27*9T 40CR  
96 ESR-DS-1534-1 1534 AStyle 24*9T AStyle 24*9T 40CR  
97 ESR-DS-1534- 2 1534 AStyle 24*9T BStyle 14*M8 40CR  
98 ESR-DS-1535- 1 1535 AStyle 25*9T BStyle 20*M8 40CR  
99 ESR-DS-1537- 1 1537 AStyle 25*9T BStyle 13*M8 40CR  
100 ESR-DS-1537- 2 1537 AStyle 25*9T BStyle 25*M8 40CR  
101 ESR-DS-1540-1 1540 AStyle 26*9T AStyle 26*9T 40CR  
102 ESR-DS-1542-1 1542 AStyle 31*9T BStyle 14*1*M8 72B  
103 ESR-DS-1545-1 1545 AStyle 28*10T AStyle 28*10T 40CR  
104 ESR-DS-1545- 2 1545 AStyle 22*9T CStyle 26*6.8 40CR  
105 ESR-DS-1546-1 1546 AStyle 26*9T AStyle 26*9T 40CR  
106 ESR-DS-1550-1 1550 AStyle 26*9T BStyle 25*M8 40CR  
107 ESR-DS-1550-2 1550 AStyle 26*9T AStyle 26*9T 40CR  
108 ESR-DS-1553-1 1553 AStyle 26*9T AStyle 26*9T 40CR  
109 ESR-DS-1555-1 1555 AStyle 26*9T DStyle cP1 3X26*7 40CR  
110 ESR-DS-1560- 1 1560 AStyle 28*10T AStyle 28*10T 40CR  
111 ESR-DS-1575- 1 1575 AStyle 26*9T DStyle CD13X26*7 40CR  
112 ESR-DS-1610-1 1610 CStyle 27*6.1 CStyle 27*6.1 40CR  
113 ESR-DS-1622-1 1622 AStyle 22*9T AStyle 22*9T 40CR  

FAQ:

 

Notice

1. We maintain high standards of customer satisfaction! Your feedback is very important to us. Before giving us neutral or negative feedback, please contact us to satisfactorily address your concerns.

2.  Please compare the good’s appearance, shape, size with your original parts before ordering.

3.  Due to the different color resolution settings of the display,  the CZPT may have a color difference, please know it.

4.  All our products are non-assembled, pictures are for reference only.

Problem with An Order?

We work hard to get everything right but mistakes happen and we want to fix them quickly, please ask any questions using the Made-in-China system before starting a dispute.

Feedback

We maintain high standards of CZPT and strive for 100% customer satisfaction! If you are not satisfied with our products or services please contact us first, sincerely hope through our cooperation, we can resolve the problems smoothly.

About Us

We do retail and wholesale for gasoline chainsaw, brush cutter, grass trimmer, and other garden tool parts. Welcome here to pick out and buy.

Contact

If you have questions or problems please leave messages, we will reply to you as soon as possible.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: RoHS, CE, ISO, CCC
Power Source: Gasoline
Type: Drive Shaft
Material: Abcd Style
Diameter: 8mm
Drive Shaft Style: a/B/C/D
Customization:
Available

|

Customized Request

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part  China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part
editor by CX 2024-05-09


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *